internetboekhandel.nl
buttons Home pagina Kassa pagina, Winkelwagentje Contact info Email ons
leeg Home pagina Kassa pagina, Winkelwagentje Contact info Email ons Home pagina Rijks
Boekenweek
Rijks Home pagina Home pagina Kassa pagina, Winkelwagentje Contact info Email ons Besteller 60
 
Nederlands Buitenlands   Alles  Titel  Auteur  ISBN        
Levende natuur
Biologie algemeen

Li, Xiu-Qing

Somatic Genome Variation

€ 200.65

Written by an international team of experts, Somatic Genome Variation presents a timely summary of the latest understanding of somatic genome development and variation in plants, animals, and microorganisms.


Taal / Language : English

Inhoudsopgave:
List Of Contributors

Preface And Introduction To Somatic Genome Variation

Section 1: Somatic Genome Variation In Animals And Humans

Chapter 1: Polyploidy In Animal Development And Disease
Jennifer L. Bandura And Norman Zielke

1.1. Introduction

1.2. Mechanisms Inducing Somatic Polyploidy

1.3. The Core Cell Cycle Machinery

1.4. Genomic Organization Of Polyploid Cells

1.5. Endoreplication - An Effective Tool For Post-Mitotic Growth And Tissue Regeneration

1.6. Initiation Of Endoreplication In Drosophila

1.7. Mechanisms Of Endocycle Oscillations In Drosophila

1.8. Gene Amplification In Drosophila Follicle Cells

1.9. Endocycle Entry In The Trophoblast Lineage

1.10. Mechanisms Of Endocycle Oscillations In Trophoblast Giant Cells

1.11. Cardiomyocytes

1.12. Hepatocytes

1.13. Megakaryocytes

1.14. Concluding Remarks

Acknowledgements

References

Chapter 2: Large-Scale Programmed Genome Rearrangements In Vertebrates
Jeramiah J. Smith

2.1. Introduction

2.2. Hagfish

2.3. Sea Lamprey

2.4. Zebra Finch

2.5. Emerging Themes And Directions

References

Chapter 3: Chromosome Instability In Stem Cells
Paola Rebuzzini, Maurizio Zuccotti, Carlo Alberto Redi And Silvia Garagna

3.1. Introduction

3.2. Pluripotent Stem Cells And Ipscs

3.3. Somatic Stem Cells

3.4. Mechanisms Of Chromosomal Instability

3.5. Mechanisms Of Chromosomal Instability In Stem Cells

References

Section 2: Somatic Genome Variation In Plants

Chapter 4: Mechanisms Of Induced Inheritable Genome Variation In Flax
Christopher A Cullis

4.1.  Introduction

4.2. Restructuring The Flax Genome

4.3. Specific Genomic Changes

4.4. What Happens When Plastic Plants Respond To Environmental Stresses?

4.5. When Do The Genomic Changes Occur And Are They Adaptive?

4.6. Is This Genomic Response Of Flax Unique?

Acknowledgements

References

Chapter 5: Environmentally Induced Genome Instability And Its Inheritance
Andrey Golubov

5.1. Introduction

5.2. Stress And Its Effects On Genomes

5.3. Transgenerational Inheritance

5.4. Concluding Remarks And Future Directions

Acknowledgements

References

Chapter 6: The Mitochondrial Genome, Genomic Shifting And Genomic Conflict
Gregory G. Brown

6.1. Introduction

6.2. HETEROPLASMY AND SUBLIMONS

6.3. CYTOPLASMIC MALE STERILITY (CMS) IN PLANTS

6.4. MITOCHONDRIAL SUBLIMONS AND CMS

6.5. RESTORER GENE EVOLUTION: SOMATIC GENETIC CHANGES DRIVE NUCLEAR GENE DIVERSITY?

6.6. SUMMARY

REFERENCES

Chapter 7: Plastid Genome Stability And Repair
Éric Zampini, Sébastien Truche, Étienne Lepage, Samuel Tremblay-Belzile And Normand Brisson

7.1. Introduction

7.2. CHARACTERISTICS OF THE PLASTID GENOME

7.3. REPLICATION OF PLASTID DNA

7.4. TRANSCRIPTION IN THE PLASTID

7.5. THE INFLUENCE OF REPLICATION AND TRANSCRIPTION ON PLASTID GENOME STABILITY

7.6. PLASTID GENOME STABILITY AND DNA REPAIR

7.7. OUTCOMES OF DNA REARRANGEMENTS

7.8. CONCLUDING REMARKS AND FUTURE DIRECTIONS

REFERENCES

Section 3. Somatic Genome Variation In Microorganisms

Chapter 8: RNA-Mediated Somatic Genome Rearrangement In Ciliates
John R. Bracht

8.1. Introduction

8.2. Ciliates: Ubiquitous Eukaryotic Microorganisms With A Long Scientific History

8.3. Two s Company: Nuclear Dimorphism In Ciliates

8.4. Paramecium: Non-Mendelian Inheritance Comes To Light

8.5. Tetrahymena And The Origin Of The Scanrna Model

8.6. Small Rnas In Stylonychia And Oxytricha

8.7. Long Noncoding RNA Templates In Genome Rearrangement

8.8. Long Noncoding RNA: An Interface For Short Noncoding Rna

8.9. Short Rna-Mediated Heterochromatin Formation And Dna Elimination

8.10. Transposable Elements And The Origins Of Genome Rearrangements

8.11. Transposons, Phase Variation, And Programmed Genome Engineering In Bacteria

8.12. Transposases, Noncoding Rna, And Chromatin Modifications In Vdj Recombination Of Vertebrates

8.13. Conclusions: Ubiquitous Genome Variation, Transposons, And Noncoding Rna

Acknowledgements

References

Chapter 9: Somatic Genome Instability In Yeast And Other Fungi
Adrianna Skoneczna And Marek Skoneczny

9.1. Introduction

9.2. Replication Process As Possible Source Of Genome Instability

9.3. Postreplicative Repair (Prr) Or Homologues Recombnation (Hr) Are Responsible For Error-Free And Error-Prone Repair Of Blocking Lesions And Replication Stall Borne Problems

9.4. Ploidy Maintenance And Chromosome Integrity Mechanisms

9.5. Concluding Remarks And Future Directions

References

Webliography

Section 4. General Genome Biology

Chapter 10: Genome Variation In Archaeans, Bacteria, And Asexually Reproducing Eukaryotes
Xiu-Qing Li

10.1. Introduction

10.2. Chromosome Number In Prokaryote Species

10.3. Genome Size Variation In Archaeans And Bacteria

10.4. Archaeal And Bacterial And Genome Size Distribution

10.5. Genomic GC Content In Archaeans, Bacteria, Fungi, Protists, Plants, And Animals

10.6. Reproducing Fungi

10.7. Correlation Between GC Content And Genome Or Chromosome Size

10.8. Genome Size And GC Content Variation In Primarily Asexually Reproducing Fungi

10.9. Evolution Of Gene Direction

10.10. Concluding Remarks And Prospective

Acknowledgements

References

Chapter 11: RNA Polyadenylation Site Regions: Highly Similar In Base Composition Pattern But Diverse In Sequence A Combination Ensuring Similar Function But Avoiding Repetitive-Regions-Related Genomic Instability
Xiu-Qing Li And Donglei Du

11.1. General Introduction To Gene Number, Direction, And RNA Polyadenylation

11.2. Base Selection At The Poly(A) Tail Starting Position In Microorganisms, Plants, And Animals

11.3. Most Frequent Upstream Motifs In Microorganisms, Plants, And Animals

11.4. The Top 20 Hexamer Motifs In The Poly(A) Site Region In Humans

11.5. Motif Frequencies In The Whole Genome

11.6. Polyadenylation Signal Motif Distribution

11.7. Alternative Polyadenylation

11.8. Base Composition Of 3 UTR In Plants And Animals

11.9.  Base Composition Comparison Between 3 UTR And Whole Genome

11.10. Base Composition Of 3 COR In Plants And Animals

11.11. Base Composition Pattern Of The Poly(A) Site Region In Protists

11.12. Base Composition Pattern Of The Poly(A) Site Region In Plants

11.13. Base Composition Pattern Of The Poly(A) Site Region In Animals

11.14. Comparison Of Poly(A) Site Region Base Composition Patterns In Plants And Animals

11.15. Common U-A-U-A-U Base Abundance Pattern In The Poly(A) Site Region In Fungi, Plants, And Animals

11.16. Difference Between The Most Frequent Motifs And Seqlogo-Showed Most Frequent Bases

11.17. RNA Structure Of The Poly(A) Site Region

11.18. Low Conservation In The Overall Nucleotide Sequence Of The Poly(A) Site Region

11.19. Poly(A) Site Region Stability And Somatic Genome Variation

11.20. Concluding Remarks And Prospective

Aacknowledgements

References

Chapter 12: Insulin Signaling Pathways In Humans And Plants
Xiu-Qing Li And Tim Xing

12.1. Introduction

12.2. Ranking Of The Insulin Signaling Pathway And Its Key Proteins

12.3. Diseases Caused By Somatic Mutations Of The PI3K, PTEN, And AKT Proteins In The Insulin Signaling Pathway

12.4. Plant Insulin And Medical Use

12.5. Role Of Insulin Signaling Pathway In Regulating Plant Growth

12.6. Concluding Remarks And Outlook

References

Chapter 13: Developmental Variation In The Nuclear Genome Primary Sequence
Xiu-Qing Li

13.1. Introduction

13.2. Genetic Mutation, DNA Damage And Protection, And Gene Conversion In Somatic Cells

13.3. Programmed Large Scale Variation In Primary DNA Sequences In Somatic Nuclear Genome

13.4. Generation Of Antibody Genes In Animals Through Somatic Genome Variation

13.5. Developmental Variation In Primary DNA Sequences In The Somatic Cells Of Plants

13.6. Heritability And Stability Of Developmentally Induced Variation In The Somatic Nuclear Genome In Plants

13.7. Concluding Remarks And Outlook

References

Chapter 14: Ploidy Variation Of The Nuclear, Chloroplast, And Mitochondrial Genomes In Somatic Cells
Xiu-Qing Li, Benoit Bizimungu, Guodong Zhang And Huaijun Si

14.1. Introduction

14.2. Nuclear Genome In Somatic Cells

14.3. Ploidy Variation Of The Individual Or Species In Plants And Animals

14.4. Effects Of Species Ploidy Variation On The Growth Of Animals And Plants

14.5. Ploidy Of Bacteria

14.6. Endopolyploidy In Animal And Plant Somatic Cells

14.7. Somatic Cell Haploidization

14.8. Aneuploid Cells In Plant Somatic Tissues

14.9. Aneuploid Cells In Cancerous Masses

14.10. Nuclear B Chromosomes In Somatic Cells

14.11. Plastid Genome Variation In Somatic Cells

14.12. Types Of Plastids

14.13. Plastid Genome And Its Size In Somatic Cells

14.14. Recombination Among Repeated Sequences In The Plastid Genome

14.15. Integrity Of The Organelle Genome In Green Leaves Under Light

14.16. Plastid Genome Ploidy Or Copy Number Variation In Somatic Cells

14.17. Mitochondrial Genome In Somatic Cells

14.18. Mitochondrial Genome And Its Size

14.19. Recombination Among Repeated Sequences And Subgenomic Molecules In Mitochondria

14.20. Mitochondrial Subgenome Copy Number Variation In Somatic Cells

14.21. Nuclear And Tissue-Specific Regulation Of Mitochondrial Gene Expression

14.22. Stoichiometric Variation And Effects On Mitochondrial Subgenomic Molecules

14.23. Organelle Genomes In Somatic Hybrids

14.24. Effects Of Nuclear Genome Ploidy On Organelle Genomes

14.25. Concluding Remarks And Outlook

Acknowledgements

References

Chapter 15: Molecular Mechanisms Of Somatic Genome Variation
Xiu-Qing Li

15.1. Introduction

15.2. Mutation Of Genes Involved In The Cell Cycle, Cell Division, Or Centromere Function 

15.3. DNA Damage 

15.4. Variation In Induction And Activity Of Radical-Scavenging Enzymes 

15.5. DNA Cytosine Deaminases 

15.6. Variation In Protective Roles Of Pigments Against Oxidative Damage

15.7. RNA-Templated DNA Repair

15.8. Errors In DNA Repair

15.9. RNA-Mediated Somatic Genome Rearrangement

15.10. Repetitive DNA Instability

15.11. Extracellular DNA 

15.12. DNA Transposition 

15.13. Somatic Crossover 

15.14. Molecular Heterosis 

15.15. Genome Damage Induced By Endoplasmic Reticulum Stress 

15.16. Telomere Degeneration

15.17. Concluding Remarks And Outlook

References

Chapter 16: Hypotheses For Interpreting Somatic Genome Variation
Xiu-Qing Li

16.1. Introduction 

16.2. Cell Specific Accumulation Of Somagenetic Variation In Somatic Cells 

16.3. Developmental Age And Genomic Network Of Reproductive Cells 

16.4. Genome Generation Cycle Of Species 

16.5. Somatic Genome Variation And Tissue-Specific Requirements During Growth Or Development

16.6. Costs And Benefits Of Somatic Genome Variation 

16.7. Hypothesis On The Existence Of A Primitive Stage In Both Animals And Plants 

16.8. Sources Of Genetic Variation From In Vitro Culture Propagation 

16.9. Hypothesis That Heterosis Is Created By Somatic Genome Variation 

16.10. Genome Stability Through Structural Similarity And Sequence Dissimilarity 

16.11. Hypothesis Interpreting The Maternal Transmission Of Organelles 

16.12. Ability Of Humans To Deal With Somatic Genome Variation And Diseases

16.13. Concluding Remarks

References

Chapter 17: Impacts Of Somatic Genome Variation On Genetic Theories And Breeding Concepts
Xiu-Qing Li

17.1. Introduction

17.2. The Term Somatic Genome

17.3. Mendelian Genetic Variation, Epigenetic Variation, And Somagenetic Variation

17.4. Breeding Criteria, Genome Cycle, Pure Lines, And Variety Stability

17.5. Weismann Barrier Hypothesis And The Need For Revision

17.6. Implications For Species Evolution

17.7. Concluding Remarks

References

Chapter 18: Somatic Genome Variation: What It Is And What It Means For Agriculture And Human Health
Xiu-Qing Li

18.1. Introduction

18.2. Natural Attributes Of Somatic Genome Variation

18.3. Implications Of Somatic Genome Variation For Human And Animal Health

18.4. Implications Of Somatic Genome Variation For Agriculture

18.5. Concluding Remarks

Acknowledgements

References

Index

Extra informatie: 
Hardback
448 pagina's
Januari 2017
1052 gram
251 x 170 x 26 mm
John Wiley & Sons Inc gb
Langere levertijd